Face recognition based on LDA in manifold subspace
نویسندگان
چکیده
Although LDA has many successes in dimensionality reduction and data separation, it also has disadvantages, especially the small sample size problem in training data because the "within-class scatter" matrix may not be accurately estimated. Moreover, this algorithm can only operate correctly with labeled data in supervised learning. In practice, data collection is very huge and labeling data requires high-cost, thus the combination of a part of labeled data and unlabeled data for this algorithm in Manifold subspace is a novelty research. This paper reports a study that propose a semi-supervised method called DSLM, which aims at overcoming all these limitations. The proposed method ensures that the discriminative information of labeled data and the intrinsic geometric structure of data are mapped to new optimal subspace. Results are obtained from the experiments and compared to several related methods showing the effectiveness of our proposed method.
منابع مشابه
Subspace Linear Discriminant Analysis for Face Recognition
In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we u...
متن کاملFace Recognition Using L-Fisherfaces
An appearance-based face recognition approach called the L-Fisherfaces is proposed in this paper, By using Local Fisher Discriminant Embedding (LFDE), the face images are mapped into a face subspace for analysis. Different from Linear Discriminant Analysis (LDA), which effectively sees only the Euclidean structure of face space, LFDE finds an embedding that preserves local information, and obta...
متن کاملLearning a Locality Preserving Subspace for Visual Recognition
Previous works have demonstrated that the face recognition performance can be improved significantly in low dimensional linear subspaces. Conventionally, principal component analysis (PCA) and linear discriminant analysis (LDA) are considered effective in deriving such a face subspace. However, both of them effectively see only the Euclidean structure of face space. In this paper, we propose a ...
متن کاملSemi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm
Over the last decade, supervised and unsupervised subspace learning methods, such as LDA and NPE, have been applied for face recognition. In real life applications, besides unlabeled image data, prior knowledge in the form of labeled data is also available, and can be incorporated in subspace learning algorithm resulting in improved performance. In this paper, we propose a subspace learning met...
متن کاملSubspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition
In face recognition, LDA often encounters the so-called small sample size (SSS) problem, also known as curse of dimensionality. This problem occurs when the dimensionality of the data is quite large in comparison to the number of available training images. One of the approaches for handling this situation is the subspace LDA. It is a two-stage framework: it first uses PCA-based method for dimen...
متن کاملPreserving Complete Subspace Structure Projection for Face Recognition
Subspace-based face recognition is one of the most successful methods for face recognition. Eigenfaces, Fisherfaces, and Laplacianfaces methods, which are based on PCA, LPP and LDA that preserve global, local and cluster structure information respectively, are three representative methods of subspace-based face recognition approaches. In this paper, we propose a novel pattern classification nam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EAI Endorsed Trans. Context-aware Syst. & Appl.
دوره 3 شماره
صفحات -
تاریخ انتشار 2016